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The far from equilibrium steady states of a simple nonlinear chemical system 
are analyzed. A standard macroscopic analysis shows that the nonlinearity 
introduces an instability which causes a transition analogous to a thermo- 
dynamic second-order phase transition. Fluctuations are introduced into 
this model through a stochastic master equation approach. The solution of 
this master equation in the steady state reveals that the system goes into a 
more ordered state above the transition point. An analogy is drawn with 
the nonequilibrium phase transition occurring in the laser at threshold. 
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1. I N T R O D U C T I O N  

T h e r e  is c u r r e n t l y  c o n s i d e r a b l e  i n t e r e s t  in  t he  b e h a v i o r  o f  s y s t e m s  far  f r o m  

t h e r m o d y n a m i c  e q u i l i b r i u m ,  a n d  in p a r t i c u l a r  t he  n o n e q u i l i b r i u m  s t eady  

s ta tes  o f  s u c h  sys tems .  R e c e n t  i n v e s t i g a t i o n s  have  s h o w n  t h a t  fo r  ce r t a in  

s y s t e m s  n o n l i n e a r i t i e s  i n t r o d u c e  ins tab i l i t i e s  in t hese  fa r  f r o m  e q u i l i b r i u m  
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steady states. Further, the behavior of these systems around a point of 
instability is remarkably analogous to the behavior of systems in thermodyna- 
mic equilibrium undergoing a second-order phase transition. 

The phenomena of nonequilibrium phase transitions may be viewed in 
the following manner. In order that the system be maintained away from 
thermodynamic equilibrium, one requires a continual transfer of energy or 
matter through the system. That is, the system is open to certain surroundings, 
which are usually idealized to be large reservoirs. These reservoirs may be an 
energy source (or "pump") or an energy sink. In the absence of a pumping 
force the system evolves under the action of the dissipative forces into a 
steady state of thermodynamic equilibrium, which is a state of maximum 
entropy. The action of the pumping force is to amplify small fluctuations 
around the thermal equilbrium and drive the system away from equilibrium. 
For small values of the pumping force the equations describing the time 
evolution of the system remain linear. The variables characterizing the 
system are then said to lie on the thermodynamic branch. A linear system 
always remains on the thermodynamic branch for arbitrary values of the 
pumping force. 

However, in a nonlinear system a "critical value" of the pumping force 
is eventually reached at which the system becomes unstable. The instability 
causes large fluctuations in the system variables which are amplified by the 
pump and there is a rather abrupt change in the physical properties of the 
system. The variables no longer lie on the thermodynamic branch but on a 
new, nonthermodynamic branch. An interesting feature of the transition to 
this new branch is the accompanying increase in order of the system. This 
new type of order arising through the amplification of fluctuations far from 
thermal equilibrium has been termed "order through fluctuations. (1,2~ The 
ordered structures formed beyond the instability have been termed "dissipa- 
tive structures. ''(1,2~ Such dissipative structures are characterized by a co- 
herent space-time behavior in contrast to the chaotic behavior of a system 
near thermal equilibrium. Examples of dissipative structures have been 
observed experimentally in chemical systems. (a-5~ 

An example of a nonequilibrium phase transition which has been 
analyzed in great detail is provided by the laser oscillator. (6-9~ Further 
examples are the parametric oscillator, (~~ the harmonic oscillator, (~  and 
the behavior of tunnel diode circuits. (12~ A discussion on nonequilbrium 
phase transitions in chemical reactions has recently been given by Schl6gl, (~3~ 
who adopted a macroscopic approach which, though describing the behavior 
of the mean values of the variables, does not include the effects of fluctuations. 
We shall include fluctuations in a model chemical reaction using a stochastic 
analysis which allows us to comment explicitly on the degree of order in the 
system. 
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2. A N O N L I N E A R  C H E M I C A L  REACTION 

A system consisting of  a number of molecules of an intermediate species 
interacting with large reservoirs of initial and final reactants provides an 
example of  a chemical system far from equilibrium. The subsystem comprising 
the intermediate species is said to be open with respect to the reservoirs of  
initial and final reactants. As an example of such a system, we consider the 
following nonlinear biochemical reaction: 

kl 
A + X ~ 2X (la) 

k2 

ks 
A ~ X (lb) 

k~ 
X + B - + C  (lc) 

This describes the autocatalytic production of the intermediate X and its 
subsequent enzymatic degradation, the rate constants for the various reac- 
tions being given by the k~. Here A and C represent the initial and final 
reactants and B the free enzyme. These are considered to exist in sufficient 
concentration that they are relatively unperturbed by fluctuations in the 
concentration of the intermediate species X. 

A certain analogy to the operation of a laser is apparent in the above 
set of chemical reactions. The autocatalytic reaction described by Eq. (la) is 
analogous to the stimulated emission process in the laser. The spontaneous 
creation of  a molecule of species X in Eq. (lb) is directly analogous to the 
spontaneous emission of a photon in the laser. This analogy is more closely 
drawn by setting kl = ka (i.e., the Einstein coefficients for spontaneous and 
stimulated emission are equal). The reaction (lc) represents an irreversible 
loss of X from the system corresponding to the loss mechanism for laser 
light, a process largely dominated by the partially reflecting mirror which 
allows a finite laser light output. The reverse reaction in Eq. (la) introduces 
a nonlinearity which is an essential feature if we are to observe an instability. 
Such an instability occurs in laser action through the nonlinear character 
of the interaction of the atoms with the radiation field. (For further 
reading on the subject of lasers consult the excellent review article of Haken.(14)) 
Similar models of nonlinear chemical reactions have been shown to exhibit 
an instability, using a macroscopic or mean number approachr 1,13,1s-21~ 
Stochastic methods have been confined to an analysis of small fluctuations 
around the steady state, thereby linearizing the systemJ 22-27) It is the aim of 
this paper to include the effects of  finite fluctuations in a nonlinear dissipative 
system. 

In order to include fluctuations, we require an equation of motion for 
the probability function P(x, t) that there are x molecules of species X 
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at time t. Using standard techniques (see the excellent review paper by 
McQuarrie(28)), we derive the following Markovian master equation for 
P(x, t): 

OP(x, t)/St = F{xP(x - 1) - (x + 1)P(x)} 
+ D{(x + 1)P(x + 1) - xP(x)} 
+ k2{(x + 1)xP(x + 1) - x(x  - l)P(x)) (2) 

where we have set k lA  = F (pump parameter) and k~B = D (loss parameter). 
It has been pointed out by Nicolis and Prigogine (22'2a) that the birth- 

death type of stochastic model employed above is inadequate for describing 
reactions with widely different time scales characterizing relaxation processes 
associated with elastic and inelastic (reactive) collisions. In these cases a more 
detailed phase space analysis must be employed. The equation of motion for 
the mean number of molecules of x derived directly from the master equation 
(2) is 

d(x) /d t  = F( (x )  + 1) - k2((x 2) - (x))  - D ( x )  (3) 

In the limit of relatively small fluctuations the variance of P(x) is small; 
hence we may approximate (x  2) = (x )  2 and write Eq. (3) as 

dX/dt = F ( X  + 1) - k 2 X ( X -  1) - D X  (4) 

where X is the mean number of X molecules. For a large value of X we may 
approximate X + 1 _ X and X ( X  - 1) ~_ X 2, so that Eq. (4) becomes 

dX/dt = ( r -  D ) X -  k2X 2 (5) 

This corresponds to the macroscopic equation obtained by SchlSgl. (~3) 
The solution to Eq. (5) in the steady state (dX/dt = 0) is readily seen to be 

O, F ~  D 
X = ( F -  D)/k2, F >1 D (6) 

We neglect the solution X = 0 for F > D since it is unstable [see Eq. (8)]. 
Thus the equation for the mean number predicts a transition from a 

zero mean number of X molecules to a finite mean number, where the 
pumping parameter equals the loss parameter F = Fc = D (see Fig. 1) 
(cf. SchlSgl(13)). This is the behavior of a second-order phase transition. It is 
analogous to the behavior of a ferromagnet in equilibrium thermodynamics. 
In a ferromagnet the macroscopic magnetization M (order parameter 
analogous to X) vanishes for a temperature T (analogous to F) higher than a 
critical temperature Tc (analogous to Fo). (The analogy is inverted since 
whereas F > Fc implies nonzero X, T > Tc implies zero M.) 

It is more closely analogous to the nonequilib~ium phase transition in the 
laser, where the mean number of photons (analogous to X) suddenly changes 
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k2X 

20 

l o  

z ~ 
/ /  

(b) ~ (a) 

1.0 2.0 3.0 ---~'D 

Fig. l .  Plot  o f  the mean number  o f  X molecules 
against  the  p u m p i n g  pa rame te r  F. (a) Macro -  

scopic' equation, (b) stochastic equation. 

from zero to a finite number when the pumping exceeds the losses. We now 
show that the critical point F = Fo is unstable in this macroscopic description. 
I f  we add an arbitrary small perturbation 3X to X then, 

3X _~ (aJ?/ax)  a x  = - ( l / r )  a x  (7) 

where r is the regression time for the fluctuation 

1/r = - a ) ~ / a X  = 2 k 2 X -  ( g -  kc) (8) 

Above and below the critical point,  r is strictly positive and finite, so that 
we have stability. However, at the critical point F = Fc, r becomes infinite, so 
the system becomes unstable. At this point any fluctuations become sufficiently 
amplified by the pump to cause X to change f rom the thermodynamic branch 
X- = 0 to the nonthermodynamic branch J( = (F - D)/k2. We note that the 
instability and resultant transition is caused by the nonlinearity introduced by 
k2. For if  k2 is zero, then the solution of Eq. (7) is always the stable solution 
X = 0 .  

3. A STATISTICAL DESCRIPTION OF THE STEADY STATE 

Though the gross features of  the phase transition are described by the 
mean value analysis, considerably more information may be obtained from 
a statistical analysis. Thus we shall return to give an exact solution to the 
stochastic master equation (2) in the steady state. To solve this equation, 
we invoke the principle of  detailed balance, which states (see Fig. 2) 

F x P ( x  - 1) - (Dx  + k2x(x - 1))P(x) = 0 (9) 

The solution to this first order difference equation is 

P(x) = P(o) (1 + ~/)-1 (lO) 

where F = k2/D. 
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n~ l  

kt Ax P(x) 
k3 AP(x) 

k~(x+l) xP(x+l) 
+ k,B(x+l) P(x+l) 

k~A(x- l) P(x-1) k2 x(x-1) 
,- k3A P(x-1) * k, Bx P(x) 

n-1 

Fig. 2. Flow of probability for finding x molecules of species X. 

Normalization of Eq. (10) gives 

P(0) = {lf1(1; 1 + 1//z; F/DIx)} -1 (11) 

where l f l  is the hypergeometric function. 
The mean and second factorial moments of the distribution are, 

respectively, 

F 1 ( 1; __F_F ~ (12) 
(x)  = P ( 0 )  t~ + l ~ f l  2 ;2  +/~ DF] 

( F )  2 1 ( 1 ~_~) (13) 
( x ( x -  1)) = P ( 0 )  ~ (/~+ 1 ) ( / ,+2)  lf~ 3;3 +/z-; 

The variance follows immediately from Eqs. (12) and (13). 
If  we plot the mean number of molecules given by Eq. (12) against 

the pump parameter F, we see that there is a sudden increase in the mean 
number as F exceeds D = Fo, similar to the macroscopic result (see Fig. 1). 
There is, however, a finite number of X molecules produced below threshold, 
in contrast to the macroscopic result, which predicted zero X molecules 
below threshold. 

A rather more precise understanding of the threshold may he reached by 
considering the distribution function Eq. (10). For F < D the (F/D) x term 
ensures that P(x) decreases rapidly with x so that the mean is close to zero. 
For F > D the nonlinear term involving /x causes the distribution to peak 
away from zero and the mean to become significantly different from zero. A 
realistic definition of the threshold or critical point is where the distribution 
first peaks away from zero, that is, P(1) = P(0). Applying this condition to 
Eq. (10) yields F = Fo = D(1 + F). This differs slightly from the macro- 
scopic result but since the nonlinear parameter/z << 1, we recover the macro- 
scopic result Fc ~ D. 

The distribution in the number of X molecules is significantly different 
above and below threshold. 
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(a) Below threshold the (F/D)* term ensures a rapid decrease in P(x) 
with x, so that the (1 +/~l)-1 terms never differ appreciably from unity in 
the region where P(x) is nonzero. Hence we can write Eq. (10) approximately 
a s  

That is, below threshold the number of X molecules obey a geometric distri- 
bution. The mean and standard deviation of this distribution are 

< x ) = 5  1 -  (15) 

~ =  ( F ) l ' 2 ( 1 - F ) - I  (16) 

We note that macroscopically the mean number of F<< D is negligible, 
agreeing with the macroscopic result X = 0. However, on a microscopic 
scale there are considerable fluctuations since the variance of the geometric 
distribution is large compared to the mean. 

(b) Above threshold F > D. The mean of the distribution (10) can 
be written in the form 

I ( D -  1) + ~ P ( 0  ) (17) <x> = 

Above threshold P(0) is negligible hence we have 

(x) "~ ( F -  D)/k2 (18) 

which is the macroscopic result. Far above threshold the distribuUon is 
peaked well away from zero; hence we have/~l >> 1 and 

P(x) ~ e-Xo(Xo)~/x! (19) 

where Xo = F/k2, which agrees with the mean given by Eq. (18) for F >> D. 
Equation (19) is a Poisson distribution with mean Xo and standard deviation 
X~/2. Since Xo >> 1, we see that the relative fluctuations become much 
smaller above the critical point. 

4. ORDER ABOVE A N D  BELOW THE CRITICAL POINT 

In classical thermodynamics one usually analyzes the behavior of a 
system around a transition point by examining some suitable macroscopic 
order parameter which is a measure of the amount of "al ignment" or long- 
range order in the system. For example, in a ferromagnet the order parameter 
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is taken to be the macroscopic magnetization. The superficial similarity of 
the mean number of molecules in the chemical system to the magnetization in 
a ferromagnet suggests that a suitable order parameter for the chemical 
system is the mean number of species X. (13~ 

This order parameter does not, however, have the immediate physical 
interpretation of being a measure of alignment in a spatial sense. The non- 
equilibrium phase transition in the chemical reaction is more directly 
analogous to the phase transition in the laser at threshold. The order param- 
eter in the laser phase transition is the electric field strength. The number of 
molecules of species X is directly analogous to the photon number or modulus 
squared of the electric field strength in the laser. 

The behavior of the distribution function P(x) bears a close similarity 
with the photon statistics of the laser above and below threshold. ~29~ Below 
the laser threshold the photons emitted obey a power law distribution typical 
of a chaotic state5 a~ This chaotic distribution arises from photons produced 
by independently emitting atoms. Above threshold the photons emitted in the 
laser obey a Poisson distribution characteristic of a coherent state. (a~ This 
coherent emission is the result of a cooperative behavior or long-range order 
effect in the laser atoms. C9) 

By analogy one may postulate that the Poisson distribution in the number 
of molecules of the chemical species X above threshold reflects a cooperative 
mechanism for the production of X. 

An alternative way of measuring the degree of order in the system is to 
calculate the entropy of the system. If we take only the variation of species 
number into account, we may define the statistical form of the entropy as 

S = - 2 P(x)log P(x) (20) 
x = O  

Below and not too close to the critical'point P(x) is the geometric distribution 
(14) and the entropy is 

S ~ - D l O g ~ - l o g  1 - (21) 

Far enough above threshold P(x) is the Poisson distribution (19) and to a 
good approximation the entropy is 

S ~ �89 + II (22) 

The absolute value of the entropy increases as a function of the pumping. 
However, below threshold the entropy S corresponds to the maximum possible 
value for a given mean number. That is, the system is in a state of maximum 
disorder, a characteristic of the thermodynamic branch. Above threshold the 
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entropy is no longer a maximum,  implying that  the system has achieved a 

more ordered state. 

5. A P P L I C A T I O N S  A N D  C O N C L U S I O N S  

We have presented a stochastic analysis of a biochemical system which 
undergoes a phase transition far from equilibrium to a more ordered state. 
This is an example of the general concepts put forward by the group of Prigo- 
gine and co-workers at Brussels suggesting a mechanism by which chemical 
and biological systems may evolve to more ordered states indicating an 
increasing degree of organization. Eigen (a~) has applied these concepts to give 
an interpretation of the evolution of "competing" biological molecules 
toward some type of genetic code. 

A possible application of the analysis of the chemical reaction presented 
in the text is to the problem of muscle contraction recently considered by 
McClare (32) and Markowitz and Nisbet. (33> In a model for efficient muscle 
action the muscle must utilize energy (energy source ATP) at each actin- 
myosin bridge at approximately the same rate and time as other bridges. 
That is, there must be some cooperative interaction between the bridges. 
McClare has introduced this cooperativity by coupling all the bridges in a 
given thin filament by the c~ helix of tropomyosin, which acts as a "wave- 
guide" for transmission of phonons. Thus, "once one A.T.P. has hydrolysed 
spontaneously the reaction could be made to spread autocatalytically along 
the thin filament like a controlled explosion. ,,(32~ This is very close indeed to 
the situation existing in the chemical reaction (1) above threshold. Similar 
ideas have been put forward by Shimizu, (8~ who advanced arguments for con- 
sidering the ordered motion of motile enzymes as a dissipative structure and 
applied these concepts to muscle contraction. 
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